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Abstract.
Background: Neuroinflammation and the activation of microglial cells are among the earliest events in Alzheimer’s disease
(AD). However, direct observation of microglia in living people is not currently possible. Here, we indexed the heritable
propensity for neuroinflammation with polygenic risk scores (PRS), using results from a recent genome-wide analysis of a
validated post-mortem measure of morphological microglial activation.
Objective: We sought to determine whether a PRS for microglial activation (PRSmic) could augment the predictive perfor-
mance of existing AD PRSs for late-life cognitive impairment.
Methods: First, PRSmic were calculated and optimized in a calibration cohort (Alzheimer’s Disease Neuroimaging Initiative
(ADNI), n = 450), with resampling. Second, predictive performance of optimal PRSmic was assessed in two independent,
population-based cohorts (total n = 212,237). Finally, we explored associations of PRSmic with a comprehensive set of imaging
and fluid AD biomarkers in ADNI.
Results: Our PRSmic showed no significant improvement in predictive power for either AD diagnosis or cognitive performance
in either external cohort. Some nominal associations were found in ADNI, but with inconsistent effect directions.
Conclusion: While genetic scores capable of indexing risk for neuroinflammatory processes in aging are highly desirable,
more well-powered genome-wide studies of microglial activation are required. Further, biobank-scale studies would benefit
from phenotyping of proximal neuroinflammatory processes to improve the PRS development phase.

Keywords: Alzheimer’s disease, Canadian Longitudinal Study on Aging, computational modelling, microglial cell, neuroin-
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INTRODUCTION

Neuroinflammation is an important process in the
pathogenesis of Alzheimer’s disease (AD) [1–5].
Efforts to identify inflammatory biomarkers for early
diagnosis or improved prognosis of AD have largely
been focused on measuring signaling proteins in
blood and cerebrospinal fluid (CSF) [6, 7]. In the
central nervous system, the activation of microglia,
the brain’s resident immune cells, is an important
mediator of inflammation in AD. The process of acti-
vating microglia from their “resting”, or sentinel,
state is closely tied to immune signaling, and enables
the removal of potentially toxic protein aggregates
(such as amyloid-�) via phagocytosis [8]. Dysregu-
lated immune signaling, such as in the case of chronic
neuroinflammation, may lead to further microglial
activation, which has been shown to form a feedback
loop with amyloid deposition, with both processes
exacerbating the other [3].

Determining the activation states of microglia in
humans is an active field. Recent work from our group
has established a post-mortem morphological phe-
notype, termed the proportion of activated microglia
(PAM), which is strongly associated with AD neu-
ropathology, rates of cognitive decline in aging, and
neuroimmune gene expression signatures from iso-
lated human microglia [9, 10]. While this measure
can proxy for microglia-mediated neuropathological
cascades in post-mortem studies of aging and AD, the
inaccessibility of human brain tissue in living people
poses important limitations on the utility of PAM.
Given its important etiological role in AD, measur-
ing the propensity for microglial activation in living
people over the course of aging may be a useful way of
stratifying at-risk populations. Further, such a strati-
fication would provide mechanistic information, and
therefore could be useful for implementing precision
treatment strategies. Unfortunately, existing methods
for determining microglial activation states in vivo
require expensive and invasive imaging protocols
using positron emission tomography (PET) [11].

To develop a minimally invasive and inexpensive
tool for identifying individuals at risk for AD based on
their propensity for morphological microglial activa-
tion in vivo, we turned to genetic markers measurable
in saliva or blood. Using genome-wide methods, we
previously identified risk loci for the PAM phenotype
in the inferior temporal (IT) and midfrontal (MF) cor-
tices [10]. These genetic maps can be used for the
calculation of polygenic risk scores (PRS), which are
commonly used to bridge the gap between genetic

research and clinical utility by summarizing an indi-
vidual’s genetic susceptibility for disease based on
genotype information [12, 13]. PRSs have been
deployed in several diseases, notably in cardiovascu-
lar diseases [14–16], including AD [17–19]. Despite
the large effect sizes of the single nucleotide polymor-
phisms (SNPs) in the APOE region, inclusion of more
SNPs in AD PRSs has been shown to improve predic-
tive power [20–22]. However, most PRSs developed
to date use as their source case-control studies on
AD diagnosis, while biologically-informed PRSs are
lacking.

Our primary goal for this study was to develop
and validate a novel PRS for microglial activation
(PRSmic) and assess the capacity of this PRSmic to
augment the predictive performance of an existing
PRS for AD (PRSAD). We hypothesized that models
including this PRSmic will show improved predic-
tive performance over models with PRSAD alone,
since existing gold-standard PRSAD are based on
clinically defined AD dementia and may be missing
crucial etiological information related to neuroin-
flammatory mechanisms. Our secondary goal was to
explore any putative associations of PRSmic with spe-
cific AD-related neuropathologies in vivo, including
amyloid-�, hyperphosphorylated tau, and inflamma-
tory AD-related biomarkers (tumor necrosis factor
alpha, TNF-�, and neurofilament light chain, NfL)
measured in both brain (PET) and periphery (blood
and CSF). In order to adhere to the highest standards
of rigor and transparency in PRS development and
reporting, we followed the methodological frame-
work described by the Clinical Genome Resource
(ClinGen) Complex Disease Working Group and the
Polygenic Score (PGS) Catalog Polygenic Risk Score
Reporting Standards (PRS-RS) [23].

MATERIALS AND METHODS

Study datasets and outcomes

The Alzheimer’s Disease Neuroimaging
Initiative (ADNI)

Data used in the preparation of this article
were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (https://adni.
loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. For up-to-
date information, see https://www.adni-info.org. The
ADNI is a longitudinal study consisting of four study
phases (ADNI-1, ADNI-GO, ADNI-2, and ADNI-3).

https://adni.loni.usc.edu
https://www.adni-info.org
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Participants are enrolled in a case-control design
(cognitively normal (CN), significant memory con-
cern (SMC), early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI),
and clinical Alzheimer’s disease (AD)) and clini-
cal, imaging, fluid biomarker, and genetic data are
collected at baseline and follow-up (6- and 12-
month) [24]. In total, we analyzed up to n = 973
participants (50.8% with an AD diagnosis) for PRS
calculation and hyperparameter tuning, and n = 1,404
participants for exploratory analyses with multi-
ple AD biomarkers and neuropathologies. Informed
written consent was obtained by the ADNI inves-
tigators at each participating ADNI site, and the
ADNI is registered with an ICMJE-approved reg-
istry (ClinicalTrials.gov registry numbers: ADNI 1:
NCT00106899; ADNI GO: NCT01078636; ADNI 2:
NCT0123197; ADNI 3: NCT02854033). Descriptive
statistics of the variables included in this study can
be found in Supplementary Table 1.

Our primary outcome used for calibration of
PRSmic was TNF-� measured in plasma using the
Luminex xMAP platform by Rules-Based Medicine
(RBM). Plasma levels of TNF-� have been previously
shown to contribute partially to an inflammatory
factor that predicts decline in executive function
in patients with mild AD [25]. A total of n = 450
participants had at least one measure of TNF-� avail-
able. For participants with repeated measures, an
average of the measurements was used as the out-
come. For the calibration of PRSAD, we derived
a subset of only participants in the cognitively
normal (n = 479) and AD (n = 494) categories. For
exploratory analyses, we did not restrict participants
by diagnostic category. Primary outcomes for these
analyses include the Alzheimer’s Disease Assess-
ment Scale–Cognitive Subscale (ADAS-Cog), where
a higher score indicates greater cognitive impairment.
Pathological outcomes were also analyzed, includ-
ing peripheral measures of known AD-related and
inflammatory biomarkers such as amyloid, tau, phos-
phorylated tau, and NfL in CSF. Levels of NfL in
plasma were also analyzed. Brain-based measures
of amyloid and tau were derived from standardized
uptake value ratios (SUVR) of PET tracers 18F-AV-45
and 18F-AV-1451, standardized to the whole cere-
bellum and the inferior cerebellar reference region,
respectively. These measures were localized to the
inferior temporal and midfrontal regions of the brain,
averaged across both hemispheres.

Genotype data for participants were obtained at
every phase: n = 757 genotyped using the Illumina

Human610-Quad BeadChip in the first phase; n = 432
genotyped using the Illumina HumanOmniExpress
BeadChip and n = 812 genotyped using the Illumina
Omni 2.5M chip in the second phase; and n = 327
genotyped using the Illumina Global Screening Array
v2 in the third phase. Standard quality control was
applied to each set of genotypes separately before
imputation was performed on the TOPMed Impu-
tation Server, resulting in 8,028,924 high-quality
variants in n = 1,569 participants.

The UK Biobank
The UK Biobank is a large-scale biomedical

database of over half a million participants residing
throughout the United Kingdom [26]. Volunteers
were initially enrolled over a four-year period begin-
ning in 2006, aged 40 to 69, and will be followed with
either repeat visits or questionnaire data to track their
health outcomes. Linked electronic health records
through the National Health Service also provided
insight into the participants’ health, notably giving
access to International Classification of Disease
(ICD-10) codes from in-patient health records. We
analyzed up to n = 200,924 elderly participants of the
UK Biobank aged 60 and over at time of recruitment.
All participants provided written informed consent
to the UK Biobank. The UK Biobank has approval
from the North West Multi-centre Research Ethics
Committee (https://www.hra.nhs.uk/about-us/com-
mittees-and-services/res-and-recs/search-research-
ethics-committees/north-west-haydock/). This study
is approved by the UK Biobank under application
ID 61530. Descriptive statistics of the variables
included in this study can be found in Supplementary
Table 1.

The primary study outcome measure utilized in
the UK Biobank is the presence of an International
Classification of Disease (ICD-10) G30 code for
AD. These codes were ascertained from any of the
following: death register, primary care records, or
hospital admission data, and binarized into presence
or absence of at least one record for each individual
in our study. Genotype data were derived from
blood samples collected at the initial assessment:
n = 487,442 genotyped using the Applied Biosystems
UK Biobank Axiom Array. After quality control,
670,739 autosomal markers remained [26]. Finally,
93,095,623 autosomal variants were imputed using
the Haplotype Reference Consortium [27] and
UK10K + 1000 Genomes reference panels [28]. We
used the UK Biobank as one of our external test
cohorts.

https://www.hra.nhs.uk/about-us/committees-and-services/res-and-recs/search-research-ethics-committees/north-west-haydock/
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The Canadian Longitudinal Study on Aging (CLSA)
The CLSA is a longitudinal, nation-wide study

of Canadians aimed at investigating the aging
process from mid- through late-life (aged 45 to
85 at recruitment), with 20 year follow-up [29].
Data were collected on approximately 50,000 ran-
domly selected Canadians via computer-assisted
telephone interviews, including measures of cogni-
tion, sociodemographics, and health equity, among
others. Additionally, a subset of approximately
30,000 participants underwent further examination
at select data collection sites and provided biospec-
imen samples for genotyping. We analyzed up to
n = 11,313 elderly participants of the CLSA aged 60
and over at time of recruitment. All participants pro-
vided informed written consent to the CLSA. The
CLSA has approved a data access agreement for this
study (Application Number: 2006026). Descriptive
statistics of the variables included in this study can
be found in Supplementary Table 1.

Our primary evaluated outcome measure in CLSA
was a latent score of overall cognition, adjusted for
age, sex, and education status. This composite score
is constructed from participant performance on the
following cognitive tests: the Rey Memory Test, the
Animal Fluency Test, the Mental Alternation Test,
the Verbal Fluency Test (FAS Test), and the Stroop
Test, standardized to a mean of 100 and a standard
deviation of 15 [30]. A higher overall cognition score
indicates better cognitive performance. Genotyping
was performed using the Axiom 2.0 Assay Auto-
mated Workflow on Affymetrix NIMBUS protocol
[31]. Samples were also hybridized to UK Biobank
arrays and 794,409 genetic variants survived qual-
ity control. Imputation was conducted with TOPMed
reference panels, resulting in genotypes for approxi-
mately 308 million genetic variants [31]. We used the
CLSA as our second external test cohort.

GWAS summary statistics for PRS calculation

To develop our PRSmic, we accessed sum-
mary statistics from our published genome-wide
association study (GWAS) of the proportion of
active microglia (PAM) phenotype measured in
post-mortem brain samples from the Religious
Orders Study and Rush Memory and Aging Project
(ROS/MAP) cohorts [10, 32]. The PAM phenotype
provides an index of microglial activation, measured
by HLA staining and manual counting of morpho-
logically activated microglia, relative to basal levels
of total microglia (including “inactive”, or sentinel

microglia) within a brain region [10, 33]. Specifically,
we retrieved genome-wide summary statistics from
two GWAS of PAM quantified in two different brain
regions: 1) inferior temporal (IT) cortex and 2) mid-
frontal (MF) cortex. These regions were chosen as
they were the only regions linked to AD neuropathol-
ogy and cognition in previous work [10]. However, it
should be noted that these two genome-wide studies
were not well powered (IT n = 219; MF n = 225) to
detect genetic effects which often exert small effects
on the measured phenotypes. For the calculation of
our baseline PRSAD, we used summary statistics from
the largest and most recent GWAS on late-onset AD
and related dementias (n = 788,989) [34].

PRS calculation

The clumping & thresholding (C + T) method [35]
implemented in PRSice-2 [36] was used to calcu-
late all PRSs in our study. This method requires the
selection of three hyperparameters: 1) linkage dis-
equilibrium (LD) clumping squared correlation (r2)
threshold, 2) LD clumping window size, and 3) p-
value threshold for SNP inclusion. The PRS is then
calculated as the effect-weighted (with weights equal
to beta coefficient from the source GWAS) sum of
allelic dosage across included SNPs, per individual.
Given the strong influence of hyperparameters on
the performance of downstream C + T PRSs, we per-
formed parameter optimization across a large set of
values according to published guidelines [37]:

• LD clumping r2 = 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95.
• LD clumping window base size = 25, 50, 100, 200,

500 (In PRSice, the window size is then com-
puted as the base size divided by the correlation
threshold).

• A sequence of 605 SNP inclusion thresholds (100
per order of magnitude, ranging from genome-wide
significance of 5 × 10−8 to 0.05), as well as {0.1,
0.2, 0.5, 0.8, 1}.

Across all combinations of parameters, PRSs com-
posed of less than 10 SNPs and duplicate scores
were discarded. The most conservative parameters
were used to select which of the duplicate scores to
retain—taking the smallest SNP-inclusion and LD
clumping r2 thresholds, and the largest clumping win-
dow size in that order of priority. Finally, to account
for fine population structure, the first ten genetic prin-
cipal components were regressed from each score,
yielding standardized residuals that were carried for-
ward for analysis.
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Statistical analysis

Analyses proceeded in three phases: 1. Cali-
bration: we calculated a series of PRSmic in our
calibration sample (ADNI) and performed optimal
clumping and thresholding hyperparameter selec-
tion using bootstrap resampling. 2. Validation: we
assessed the performance of models including our
optimized PRSmic in elderly participants from two
independent, population-based cohorts. We also
tested differences in performance of models that
included only established AD PRS vs. models that
included our novel PRSmic + PRSAD. 3. Exploration:
following steps 1 and 2, designed to meet our first
study goal, we relaxed statistical correction thresh-
olds to identify putative associations of PRSmic with
a set of in vivo AD biomarkers within the deeply-
phenotyped ADNI sample.

Calibration of microglial PRS (PRSmic) in ADNI
We first calculated two sets of PRSmic in the

non-Hispanic White ADNI subsample (n = 1,414),
corresponding to the two source GWAS performed
for PAM in two brain regions; we refer to these scores
as PRSmic[MF] for midfrontal cortex, and PRSmic[IT]
for inferior temporal cortex. Linear regression mod-
els were fit to test the associations of the PRSmic
with levels of plasma TNF-� in n = 450 samples with
complete data. In the absence of a comparable mor-
phological microglial activation phenotype in any
existing datasets outside of the ROS/MAP samples
that were used in the source PAM GWAS, TNF-�
was used as a proxy for microglial activation in ADNI
due to the known phenomenon of TNF-�-mediated
microglia overactivation [38]. We searched a param-
eter space of seven clumping correlation thresholds,
five clumping window sizes, and 605 SNP-inclusion
thresholds for a total of 21,175 parameter combina-
tions. After ensuring > 10 SNPs were included in a
score and duplicate scores were removed, we were
left with a total of 9,685 PRSmic[IT] and 9,228
PRSmic[MF] scores for optimization. We fit separate
linear models of TNF-� for each score, covarying
for age, sex, and years of education, then performed
1,000 iterations of bootstrap resampling on every
model. Bootstrapped r2 were obtained for each model
and the top performing combinations of hyperpa-
rameters (according to median bootstrapped r2 ) were
selected and used to calculate PRSmic for modelling
in CLSA and UK Biobank.

To calibrate our PRSAD for downstream modelling
and comparison, we performed a similar proce-

dure but using clinical AD diagnosis at last study
visit as the outcome (n = 973, 49.2% cognitively
normal control, excluding MCI cases), including
the same covariates. For each bootstrap sample, a
model was trained on 70% of the data (n = 681) and
AUC was calculated using the remaining 30% test
set (n = 292). Optimal construction parameters were
selected based on median bootstrapped AUC. The
bootstrap selection procedure was then repeated with-
out the inclusion of covariates in the bootstrapped
models, as a point of comparison.

Testing the predictive performance of PRSmic for
AD diagnosis in UK Biobank and cognitive
performance in CLSA

PRSmic (IT and MF) and PRSAD were calcu-
lated using calibrated hyperparameters in both UK
Biobank and CLSA and tested for predictive per-
formance in models of AD diagnosis and cognitive
function, respectively. To determine the improvement
in models with the addition of PRSmic, we compared
1) baseline clinical covariate-only models, 2) baseline
models plus an additional PRSAD term, and 3) fully
augmented models with both PRSAD and PRSmic
terms added. We calculated changes in AUC (for
binary AD diagnosis) and changes in r2 (for con-
tinuous cognitive performance) resulting from the
inclusion of the PRSmic term. Likelihood ratio tests
(LRT) were performed to assess if fully augmented
models represent an improvement over baseline mod-
els. Biological sex, age, and level of education (using
the International Standard Classification for Educa-
tion (ISCED) definitions in the UK Biobank) [39]
were also included as covariates in the predictive
models.

Exploration of PRSmic associations with in vivo
AD biomarkers in ADNI

Following the calibration and validation of PRSmic
in UK Biobank and CLSA, we returned to the ADNI
calibration sample to map exploratory associations
between PRSmic and several pathological and cogni-
tive variables in vivo. Multiple testing correction was
performed using the Bonferroni method across the
number of tested phenotypes and both PRSmic deriva-
tions (i.e., IT and MF; critical p = 0.05/11/2 = 0.0023),
but no correction was performed within PRS across
construction parameters. Given the exploratory aim
of this part of the analyses, we deemed this more lib-
eral correction approach suitable. Models included
biological sex, age, and education level as covariates.
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Table 1
Optimal PRS construction parameters selected from the bootstrap selection procedure

Calibration
Model

Squared
correlation
threshold

Window size SNP inclusion
threshold

# of SNPs in
PRS

Maximal
bootstrapped
metric*

Bootstrap 95%
CI

PRSmic[IT] With
covariates

0.1 5,000 0.1 47,158 0.048 [0.02,0.09]

Without
covariates

0.1 5,000 0.1 47,158 0.010 [3.05 × 10−4,
0.036]

PRSmic[MF] With
covariates

0.2 125 2.75 × 10−5 27 0.054 [0.02,0.10]

Without
covariates

0.2 125 3.02 × 10−5 29 0.015 [8.26 × 10−4,
0.045]

PRSAD With
covariates

0.1 250 3.65 × 10−6 251 0.675 [0.62,0.73]

Without
covariates

0.2 125 1.49 × 10−6 307 0.621 [0.56,0.68]

*Area under the ROC curve (AUC) was used for Alzheimer’s disease diagnosis (with a 70/30 training/testing split) and variance explained
(r2 ) for TNF-� (trained on the entire sample). The upper rows for each PRS consist of statistics derived from regression models including
covariates (age, sex, and years of education), and the lower from models excluding covariates.

Table 2
Estimated effect and significance of PRS terms in linear models of Alzheimer’s disease diagnosis and cognitive functioning

Calibration Model PRSmic[IT] PRSmic[MF] PRSAD

UK Biobank (AD diagnosis, AUC) With covariates –0.02 (0.36) 4.87 × 10−3 (0.82) 0.59 (1.51 × 10-193)
Without covariates –0.02 (0.26) 1.71 × 10−3 (0.94) 0.56 (8.12 × 10-161)

CLSA (cognitive score, r2 ) With covariates 4.80 × 10−4 (0.96) 2.10 × 10−3 (0.82) –0.02 (8.28 × 10-3)
Without covariates 3.89 × 10−3 (0.67) 2.21 × 10−3 (0.81) –0.02 (0.06)

The upper rows for each cohort consist of statistics derived from scores calibrated in ADNI with covariates and the lower for scores calibrated
without covariates. Standardized betas and p-values are calculated from regression models controlling for age, sex, and years of education,
with significant terms in bold.

RESULTS

Calibration of PRSmic against plasma TNF-α in
ADNI

Results from the bootstrap model selection
procedure showed variability in model perfor-
mance according to hyperparameter combinations
regardless of covariate inclusion (Supplementary
Figure 1) or exclusion (Supplementary Figure 2)
in the calibration process. The optimal combina-
tion of hyperparameters for each PRS are shown
in Table 1. In ADNI, these optimized PRSmic
were significantly associated with levels of TNF-
� (PRSmic[IT]: � = 0.106, p = 0.026; PRSmic[MF]:
� = –0.126, p = 5.25 × 10−3) and the PRSAD was
strongly predictive of AD diagnosis (� = 0.592,
p = 4.68 × 10−15). Importantly, these models are not
unbiased indicators of performance, as they are over-
fit due to sample overlap. Also, we observed that
the effect for the midfrontal score was inconsistent
with the other scores, suggesting that genetically-
determined greater propensity for morphological
microglial activation in midfrontal cortex might

be associated with lower levels of circulating
TNF-�.

Testing of PRSmic in UK Biobank and CLSA

First, we tested the predictive performance of
each optimized PRS individually on AD diagnosis
(UK Biobank) and cognitive performance (CLSA),
with and without the addition of covariates (results
are summarized in Table 2). For modelling of AD
diagnosis in UK Biobank, the addition of PRSAD
significantly improved baseline covariates-only mod-
els (�AUC = 0.05; p = 1.11 × 10−185), as expected
(Table 3). Testing the addition of PRSmic into base-
line covariates-only models, however, did not result
in any significant improvements (IT: p = 0.36; MF:
p = 0.82). Similarly, for modelling of cognitive per-
formance in CLSA, the addition of PRSAD improved
baseline covariates-only models (�r2 = 5.97 × 10−4,
p = 0.01), while PRSmic did not (IT: p = 0.96; MF:
p = 0.82) (Table 3). These results suggest that, on their
own, the PRSmic do not hold significant predictive
power for AD diagnosis or cognitive performance in
the general mid-late life population.
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Table 3
Change in model performance with inclusion of different polygenic risk scores

Calibration
Model

�AUC/�r2 compared to “covariates-only”
models (p-value)

�AUC/�r2 compared to
“covariates + PRSAD” models
(p-value)

PRSmic[IT] PRSmic[MF] PRSAD PRSmic[IT] PRSmic[MF]

UK Biobank
(AD
diagnosis,
�AUC)

With
covariates

5.64 × 10−5

(0.36)
–7.41 × 10−4

(0.82)
5.23 × 10-2

(1.11 × 10-185)
2.21 × 10−4

(0.23)
–2.10 × 10−4

(0.76)

Without
covariates

9.64 × 10−5

(0.26)
–1.10 × 10−3

(0.94)
4.57 × 10-2

(1.15 × 10-157)
5.23 × 10−4

(0.17)
–4.61 × 10−4

(0.90)
CLSA
(cognitive
score, �r2 )

With
covariates

2.30 × 10−7

(0.96)
4.37 × 10−6

(0.82)
5.97 × 10-4

(0.01)
5.14 × 10−7

(0.94)
5.33 × 10−6

(0.80)

Without
covariates

1.53 × 10−5

(0.67)
4.84 × 10−6

(0.81)
3.08 × 10−4

(0.06)
1.60 × 10−5

(0.67)
5.92 × 10−6

(0.79)

The upper rows for each cohort consist of statistics derived from scores calibrated in ADNI with covariates (age, sex, and years of education),
and the lower for scores calibrated without covariates. p-values are calculated from likelihood-ratio tests, with significant results (in bold)
indicating a better statistical fit with the inclusion of the extra term tested.

We then tested the ability of PRSmic to improve
models of AD diagnosis and cognitive performance
over and above models including PRSAD. Augment-
ing models that include PRSAD terms with PRSmic did
not significantly improve them in either UK Biobank
or CLSA (Fig. 1). We also tested whether hyper-
parameters optimized using covariate-inclusive or
-exclusive models altered performance in any impor-
tant ways. Results were largely unchanged when
analyses were repeated with covariate-exclusive
models (Supplementary Figure 3). One minor obser-
vation was that PRSAD scores calibrated without
covariates that included showed less significant
improvement of covariate-only models of cognitive
performance in CLSA (�r2 = 3.08 × 10−4, p = 0.06).

Exploration of PRS associations with in vivo AD
biomarkers in ADNI

Finally, we explored associations of both the
PRSAD and the PRSmic with intermediate AD phe-
notypes in the ADNI sample, which had a wide array
of available central and peripheral biomarker data
available. First, our optimized PRSAD was associated
with worse cognitive performance on the ADAS-Cog
13-item scale (� = 0.22, p = 2.08 × 10−17). Higher
levels of tau (� = 0.26, p = 2.42 × 10−13) and its
phosphorylated variant (� = 0.28, p = 3.52 × 10−15)
measured in CSF were also found to be associ-
ated with PRSAD. Lower levels of amyloid measured
in both CSF (� = –0.30, p = 8.57 × 10−15) and with
PET tracer 18F-AV-45 in the inferior temporal region
(� = –0.14, p = 8.63 × 10−4) were associated with

PRSAD as well. Similarly, elevated levels of tau
measured with PET tracer 18F-AV-1451 in both
the inferior temporal (� = 0.24, p = 2.01 × 10−5) and
midfrontal (� = 0.18, p = 1.05 × 10−3) regions were
also associated with our score. We also observed
associations with elevated NfL (� = 0.11, p = 0.01)
and decreased tumor necrosis factor alpha (� = –0.10,
p = 0.03) in plasma, as well as increased CSF NfL
(� = 0.16, p = 2.70 × 10−3). However, these did not
survive correction for multiple testing. The only AD
phenotype not observed to be associated with PRSAD
is levels of PET amyloid in the midfrontal region
(p = 0.17).

No association with any AD phenotype and PRSmic
survived correction for multiple testing. At uncor-
rected significance levels, the inferior temporal score,
PRSmic[IT], is significantly associated with both
CSF (� = 0.09, p = 0.02) and brain (inferior tempo-
ral PET: � = –0.11, p = 7.44 × 10−3; midfrontal PET:
� = 0.08, p = 0.05) amyloid. Significant associations
were also found with cognition (� = –0.06, p = 0.02)
and plasma markers TNF-� (� = 0.11, p = 0.03) and
NfL (� = 0.11, p = 0.02). PRSmic[MF] on the other
hand, was nominally associated with all markers
tested except for PET imaging markers for tau
(inferior temporal PET: p = 0.09; midfrontal PET,
p = 0.12). However, the direction of effect is incon-
sistent with the associations found with PRSAD
with the exception of plasma TNF-� (� = –0.13,
p = 5.12 × 10−3). Results for all the phenotypes
tested, including those that did not pass correction
for multiple testing are summarized in Fig. 2 and
Supplementary Table 2.
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Fig. 1. ROC curves for different models of Alzheimer’s disease diagnosis in the UK Biobank with A) the addition of PRSmic and PRSAD
to covariates-only models, and B) the addition of PRSmic to models including both covariates and PRSAD. Increase to AUC is presented
in orange in C) with p-values from likelihood ratio tests indicated above each bar. Similarly, increase in variance explained for models of
cognitive performance in CLSA are presented in D). All scores used in these models were calibrated with age, sex, and education levels as
covariates.

DISCUSSION

We developed and tested a novel PRS for morpho-
logical microglial activation as an adjunct to existing
PRS as predictors of AD and cognitive performance
in mid-late life. Such a score would contribute to our
understanding of the genetics of neuroimmune mech-
anisms of pathological aging and potentially improve
the clinical utility of genetic diagnostic and prog-
nostic tools. We performed a rigorous resampling
procedure using independent data and a proxy phe-
notype for microglial activation to identify optimal
PRS hyperparameters, finding significant associa-
tions between these optimal scores and levels of

TNF-�. We then investigated the utility of PRSmic by
testing for predictive ability in two external validation
cohorts, the UK Biobank and CLSA. We observed
no significant associations between the PRSmic and
either AD diagnosis or cognitive performance, nor
any significant improvement in PRSAD model per-
formance with the inclusion of PRSmic.

Our largely negative results, especially the inability
of the PRSmic to improve upon predictions from exist-
ing PRS for AD, point to four possible conclusions:
1) the genetic propensity for microglial activation is
not related to the pathogenesis of AD, 2) the clump-
ing and thresholding PRS methodology was unable to
capture the genetic propensity for microglial activa-



E.S. Tio et al. / Microglia Polygenic Score for Alzheimer’s Disease 1557

Fig. 2. Associations of microglial-activation specific PRSs (IT, blue; MF, orange) and Alzheimer’s disease (AD) specific PRS (green) with
AD-related phenotypes. –Log10(p-values), weighted by direction of effect, indicate the strength of evidence for association of each AD-
related phenotype with the scores. The red dotted lines indicate corrected statistical significance thresholds, and the black dotted lines indicate
uncorrected thresholds of p = 0.05. All p-values are two-sided and calculated from linear regression models. Model covariates included age,
sex, and education levels.

tion, 3) our PRSmic was not portable due to population
and phenotypic measurement differences between the
source GWAS, calibration, and optimization samples,
and 4) the source GWAS for microglial activation
was underpowered and did not produce durable esti-
mates of SNP-based effects suitable for polygenic
scoring. Here, we will address each of these possible
conclusions.

First, microglial activation is a well-studied phe-
nomenon that has been extensively characterized at
multiple stages of AD pathogenesis and progression.
The post-mortem morphological phenotype of PAM
has also been well characterized at the clinical, cog-
nitive, neuropathological, and molecular levels [10].
What is less clear is whether or not genetic signals for
this phenotype represent stable traits and mechanisms
which hold predictive value for AD at the population
level. In support of our endeavor, neuroinflammatory
traits have been represented by genetic instruments
previously with varying results [40, 41].

Second, the clumping and threshold method is only
one of dozens of PRS methods available today. We

chose this method due to 1) its optimal performance
in the prediction of AD vs. other available methods
[37], and 2) its simplicity and ease of interpreta-
tion. Also, unlike some other methods, clumping and
thresholding requires the selection of hyperparame-
ters that govern the handling of LD and the set of
included SNPs, which can have dramatic impacts on
PRS performance [37]. Calibration of these hyperpa-
rameters can be a major challenge, especially in the
absence of independent datasets. Some very recent
advances have been made in this space [42]. In our
case, the lack of direct measures of microglial activa-
tion outside of the source GWAS cohort created the
need for a proxy phenotype in our calibration proce-
dure. TNF-� was selected as it is a known peripheral
marker of microglial activation [43, 44], specifically
as measured by morphology and physiological activ-
ity, which is most similar to the PAM phenotype.
TNF-� is also known to be elevated in both the brains
and plasma of AD patients, with postmortem studies
indicating proximity to amyloid plaques [45], fur-
ther supported by studies of human microglial cell
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cultures showing induction of TNF-� release by amy-
loid plaques [46]. Genome-wide association studies
have also consistently linked TNF-� receptors with
AD. Associations with peripheral blood-based TNF-
�, however, have yet to be fully elucidated in humans
despite strong evidence from pre-clinical models
[47–49]. As more peripheral or in vivo imaging mark-
ers of PAM are identified, more accurate polygenic
scores for microglial activation can be developed,
eliminating the need of a proxy phenotype, such as
TNF-�.

Third, lack of portability is a known challenge
with PRS development and is not entirely unexpected
given the sensitivity of the scores to their method
of construction [50]. Our results serve to exemplify
the challenges of indexing biological signals that
are phenotypically relevant but difficult to ascer-
tain, as is the case of neuroinflammation in AD. We
have shown that genetic signals specific to microglial
activation are associated with other measures of neu-
roinflammation. However, the effects observed in
ADNI may be partially attributed to the similarity
to ROS/MAP, the cohort in which the proportion
of activated microglia was originally characterized.
Our external validation cohorts, on the other hand,
are community-based representative samples with no
particular enrichment for late-life or AD, making
establishing the link between neuroinflammation and
AD more difficult.

Finally, the source GWAS that produced the sum-
mary statistics that our novel scores were based on
only included up to 225 participants, which may
not provide adequate statistical power [51]. Nonethe-
less, our source GWASs identified two genome-wide
significant hits, one of which was validated in an inde-
pendent sample of TSPO PET imaging. And while
microglial activation and proliferation are known to
be sensitive to environmental exposures, the genetic
basis for the PAM phenotype has been shown to
genetically overlap with heritable risk for multiple
traits and disorders, including AD and Crohn’s dis-
ease, further motivating investigations of its genetic
causes. Another challenge with the source GWAS is
that, due to the small sample size, formal estimates
of SNP-based heritability were not reliable, meaning
we cannot verify if the trait has a heritability above
h2 = 0.05, which is an oft-used heuristic for deter-
mining the suitability of a trait for PRS modelling
[52].

Following best practices for rigorous polygenic
risk score development, we did not find evidence
to support the hypothesis that a PRS for morpho-

logical microglial activation can improve models of
cognitive performance and AD in late life beyond a
benchmark AD-specific PRS. While our study sug-
gests that there may be some links between the
genetic signals for morphological microglial activa-
tion and circulating TNF-�, we believe that larger,
better-powered GWAS are required on such immune
phenotypes prior to further testing.
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